One-Dimensional Random Field Ising Model and Discrete Stochastic Mappings

U. Behn ${ }^{1}$ and V. A. Zagrebnov ${ }^{2}$

Received August 20, 1986; revision received January 5, 1987

Abstract

Previous results relating the one-dimensional random field Ising model to a discrete stochastic mapping are generalized to a two-valued correlated random (Markovian) field and to the case of zero temperature. The fractal dimension of the support of the invariant measure is calculated in a simple approximation and its dependence on the physical parameters is discussed.

KEY WORDS: Random field Ising model; stochastic mapping; Markov chains; invariant measure; fractal dimension.

1. INTRODUCTION

The calculation of the partition function of the one-dimensional Ising chain in a static random magnetic field can be reduced to the problem of one spin in an auxiliary local random field ${ }^{(1,2)}$

$$
\begin{align*}
Z & =\sum_{\left\{s_{n}\right\}} \exp \left[\beta \sum_{n=1}^{N}\left(J s_{n} s_{n+1}+h_{n} s_{n}\right)\right] \\
& =\sum_{s_{N}} \exp \left\{\beta\left[\xi_{N} s_{N}+\sum_{n=1}^{N} B\left(\xi_{n}\right)\right]\right\} \tag{1}
\end{align*}
$$

where the local random field ξ_{n} is governed by the discrete stochastic mapping

$$
\begin{equation*}
\xi_{n}=h_{n}+A\left(\xi_{n-1}\right)=f\left(h_{n}, \xi_{n-1}\right), \quad \xi_{0}=0, \quad n=1,2, \ldots, N \tag{2}
\end{equation*}
$$

[^0]Here

$$
\begin{align*}
& A(x)=(2 \beta)^{-1} \ln [\operatorname{ch} \beta(x+J) / \operatorname{ch} \beta(x-J)] \tag{3}\\
& B(x)=(2 \beta)^{-1} \ln [4 \operatorname{ch} \beta(x+J) \operatorname{ch} \beta(x-J)] \tag{4}
\end{align*}
$$

The probability density $P(x)$ of the local random field ξ_{n} can be used to calculate physical quantities such as the free energy, the magnetization, or the Edwards-Anderson parameter. ${ }^{(2)}$

Obviously, the properties of the stochastic mapping depend on the nature of the driving process h_{n} and the shape of the function A.

For an identical independent distributed two-valued magnetic field it was previously shown ${ }^{(2-5)}$ for nonzero temperatures that for small exchange J the support of $P(x)$ has a fractal structure, whereas for large J the support is continuous. For a continuous distribution the support is the continuum. ${ }^{(5)}$

In this contribution the previous considerations are extended to a Markovian two-valued magnetic field and to the case of zero temperature. For $T=0$ the support consists of a finite number of points and the theory of finite-state Markov chains is applied to determine the invariant measure. For $T \neq 0$ the fractal dimension of the support is calculated in a simple approximation and its dependence on the physical parameters (h, J, T) is discussed.

2. GENERALIZATION TO MARKOVIAN FIELDS

If the external magnetic field h_{n} is a first-order Markov chain, the auxiliary random field ξ_{n} is a second-order Markov chain. Introducing the vector $\left(\xi_{n}, h_{n}\right)$, we have for the Chapman-Kolmogorov equation for the joint probability density $p_{n}(x, \eta)$

$$
\begin{equation*}
p_{n}(x, \eta)=\int d \eta^{\prime} \int d x^{\prime} T\left(\eta \mid \eta^{\prime}\right) p_{n-1}\left(x^{\prime}, \eta^{\prime}\right) \delta\left(x-\eta-A\left(x^{\prime}\right)\right) \tag{5}
\end{equation*}
$$

where the transient probability density for the external magnetic field is, e.g.,

$$
T\left(\eta \mid \eta^{\prime}\right)=\alpha \delta\left(\eta+\eta^{\prime}\right)+(1-\alpha) \delta\left(\eta-\eta^{\prime}\right)
$$

α is the probability that h_{n} changes sign from site n to $n+1$.
For an uncorrelated external field ($\alpha=1 / 2$) one finds with $T\left(\eta \mid \eta^{\prime}\right)=$ $\rho(\eta)$ the Chapman-Kolmogorov equation for a first-order Markov chain. ${ }^{(2)}$

For a constant external field $(\alpha=0)$ one reproduces with $T\left(\eta \mid \eta^{\prime}\right)=$ $\delta\left(\eta-\eta^{\prime}\right)$ and $\rho(\eta)=\delta(\eta-h)$ the fixed-point result $p^{*}(x, h)=\delta\left(x-x^{*}\right)$,
where $x^{*}=h+A\left(x^{*}\right) .{ }^{(1)}$ An alternating external field with period one is obtained if $\alpha=1$.

The generalization to Markovian fields allows one to interpolate between these limiting cases.

3. ZERO-TEMPERATURE PROPERTIES

For zero temperature the function $A(x)$ that governs (2) is piecewise linear,

$$
A(x)=\left\{\begin{array}{lll}
-J & \text { for } & x<-J \tag{6}\\
x & \text { for } & |x| \leqslant J \\
J & \text { for } & x>J
\end{array}\right.
$$

As a consequence, for a finite-state driving process, the mapping (2) generates for a given J only a finite number of possible values, so that the fractal dimension of the support at zero temperature is zero.

For an external field taking only the values $\pm h$ the mapping (2) generates only the values

$$
\begin{equation*}
x(m, \pm J)=m h \pm J, \quad x(m, 0)=m h \tag{7}
\end{equation*}
$$

where the integer m has to be chosen such that

$$
\begin{equation*}
x \in[h-J, h+J] \cup[-h+J,-h-J] \tag{8}
\end{equation*}
$$

These possible states can be classified into essential and inessential states according to the usual theory of finite-state Markov chains. This classification depends in general on the value of α.

The measure consists of a sum of weighted δ-functions located at the points $\left\{x_{i}, h_{i}\right\}$, which constitute the space of states. Introducing the vector of the weights $\mathbf{w}^{(n)}=\left\{w_{i}^{(n)}\right\}$, one has that the Chapman-Kolmogorov equation (5) converts into the matrix equation

$$
\begin{equation*}
\mathbf{w}^{(n)}=D \mathbf{w}^{(n-1)} \tag{9}
\end{equation*}
$$

where the matrix elements of D are α if $x_{i}^{(n)}=f\left(h, x_{j}^{(n-1)}=f(-h, \cdot)\right)$ and $1-\alpha$ if $x_{i}^{(n)}=f\left(h, x_{j}^{(n-1)}=f(h, \cdot)\right)$, and zero otherwise.

The invariant measure corresponds to the fixed points of (9) given by $(1-D) \mathbf{w}^{*}=0$ or by $\mathbf{w}^{*}=\lim _{n \rightarrow \infty} D^{n} \mathbf{w}^{(0)}$ (if this limit exists). The number of fixed-point solutions is equal to the number of disconnected sets of essential states.

For example, we consider the case $0<J<h / 2$, where we have the flow diagram shown in Fig. 1. For $0<\alpha<1$ there are four essential states

Fig. 1. Flow diagram of the mapping (2) for zero temperature and $0<J<h / 2$. The solid (open) arrows denote the action of (2) for the realizations $h_{n}=h\left(h_{n}=-h\right)$.
$\{(h+J, h), \quad(h-J, h), \quad(-h+J,-h), \quad(-h-J,-h)\}, \quad$ which map exclusively into themselves, whereas h and $-h$ are inessential, since there is a net outflow into essential states. The transition matrix between the four essential states is

$$
D=\left(\begin{array}{cccc}
1-\alpha & 1-\alpha & 0 & 0 \tag{10}\\
0 & 0 & \alpha & \alpha \\
\alpha & \alpha & 0 & 0 \\
0 & 0 & 1-\alpha & 1-\alpha
\end{array}\right)
$$

The unique fixed point of (9) is $\mathbf{w}^{*}=(1-\alpha, \alpha, \alpha, 1-\alpha)^{T} / 2$. For $\alpha=0, D$ becomes idempotent and (9) has two different fixed points corresponding to the trapping states $\pm(h+J)$. For $\alpha=1$ the process oscillates between $-h+J$ and $h-J$ and we observe that $\lim _{n \rightarrow \infty} D^{n}$ does not exist.

For zero temperature and nonzero mean external field $\left\langle h_{n}\right\rangle=h_{0}$ a similar analysis shows that for $h_{0}<h$ the number of states is enlarged compared with the case $h_{0}=0$, whereas for $h \leqslant h_{0}$ a completely different behavior is found: there are only two essential states, $J+h_{0}-h$ and $J+h_{0}+h$. It is worthwhile to mention that the latter holds also for the periodic case $\alpha=1$. A comparison with zero-temperature results obtained by a different method ${ }^{(6)}$ is in preparation.

4. NONZERO-TEMPERATURE PROPERTIES

For nonzero temperature $A(x)$ is infinitely many times differentiable and as a consequence (2) generates for $0<\alpha<1$ an infinite number of possible values. These values can be related to infinite sequences of plus and minus signs in the following way.

We denote the result of the nth iteration of (2) starting from the initial value $\xi_{0}=y$ by

$$
x_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} ; y}=f\left(h_{1}, f\left(h_{2}, f\left(\ldots, f\left(h_{n}, y\right) \cdots\right)\right)\right)
$$

where $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is the sequence of signs of a given realization of the driving process $\left\{h_{1}, \ldots, h_{n}\right\}$. The result of infinitely many iterations [not depending on the initial value y, because of $\sigma_{x} f(h, x)<1$] is denoted by x_{σ} where σ symbolizes an infinite sequence of signs.

Hence, the support of the probability density is the set $S=\left\{x_{0}\right\}$, which is an attractor whose basin of attraction is \mathbb{R}^{1}. Any two points $x_{\sigma^{\prime}}$, $x_{\mathrm{a}^{\prime \prime}} \in S$ can be connected by (2).

It can be shown that starting from an arbitrary initial density p_{0} the sequence $\left\{p_{n}\right\}$ converges to the unique ergodic invariant measure p^{*}. ${ }^{(7)}$

For zero mean external field it can be seen by construction that $S \subset$ [$-x^{*}, x^{*}$], where x^{*} is the fixed point of (2) for $h_{n}=h$. Obviously, there are parameters for which there are no states x_{σ} between the points $x_{+;-\sigma^{*}}=f\left(h,-x^{*}\right)$ and $x_{-; \boldsymbol{\sigma}^{*}}=f\left(-h, x^{*}\right)$, i.e., there is a gap of the width (cf. Fig. 2)

$$
\begin{equation*}
\Delta=x_{+;-\sigma^{*}}-x_{-; \sigma^{*}}=2\left(2 h-x^{*}\right) \tag{11}
\end{equation*}
$$

Applying (2), this gap produces two gaps of the second generation and so on. The two endpoints of one of the 2^{n-1} gaps in the nth generation can be represented by

$$
x_{\sigma_{1}, \ldots, \sigma_{n-1},+;-\sigma^{*}} \quad \text { and } \quad x_{\sigma_{1}, \ldots, \sigma_{n-1},-; \sigma^{*}}
$$

We call the finite sequence of n (different) signs $\left\{\sigma_{1}, \ldots, \sigma_{n-1}, \pm\right\}$ the "head" and the infinite sequence of identical signs $\left\{\mp \sigma^{*}\right\}$ the "tail." The set of endpoints is countable. On the other hand, it is dense in S : An endpoint is as close to x_{σ} as long as its "head" is chosen in such a way that it coincides with the corresponding signs of $\boldsymbol{\sigma}$. Thus, in an arbitrary neighborhood of x_{σ} we can find a gap.

Therefore, the support is nowhere dense on $\left[-x^{*}, x^{*}\right]$ and constitutes a fractal, but it is not self-similar in a simple way like the Cantor set.

Replacing $A(x)$ by $\left(x^{*}-h\right) x / x^{*}$ (cf. dashed lines in Fig. 2), the above procedure gives instead of S the Cantor set C_{A} with the largest gap equal

Fig. 2. The construction of the support S of the mapping (2) for nonzero temperature and positive gap. The dashed lines correspond to the Cantor approximation. For an alternating field ($\alpha=1$), S reduces to an attracting orbit (dotted line).
to A. Deviations of S from C_{Δ} are due to the nonlinearity of $A(x)$. In this approximation one obtains the fractal dimension (ef. Fig. 3)

$$
d_{f} \approx\left\{\begin{array}{lll}
1 & \text { for } & \Delta \leqslant 0 \tag{12}\\
\ln 2 / \ln \left[x^{*} /\left(x^{*}-h\right)\right] & \text { for } & \Delta>0
\end{array}\right.
$$

The line $A(h, T)=0$ separates the (h, T) plane into two regions characterized by the fractal dimension of the support (cf. Fig.4). For zero temperature the support consists of a finite number of points, so that $d_{f}=0$. In the gapless region there is a discontinuous transition for $T \rightarrow 0$, whereas in the fractal region the transition is continuous. For $T \rightarrow \infty$ the fractal dimension also reduces to zero.

Since we are dealing with the one-dimensional Ising model, there are no phases in the thermodynamic sense, but there are parameters such as d_{f} or the Liapunov exponent which behave as functions of (h, T, J) like "order parameters" and may indicate, e.g., a drastic change in the dynamics.

Fig. 3. Fractal dimension versus βJ for $\beta h=1$ calculated (--) in zeroth-order perturbation theory, ${ }^{(2)}(-)$ by an iteration procedure, ${ }^{(8)}$ and (\cdots) in the Cantor approximation. The arrow indicates the value of βJ for which the gap vanishes.

Fig. 4. Qualitative behavior of d_{f} as a function of temperature and magnetic field for a given J.

ACKNOWLEDGMENT

One of us (V. Z.) thanks Prof. P. Collet for helpful discussions.

REFERENCES

1. P. Rujan, Physica A 91:549 (1978).
2. G. Györgyi and P. Rujan, J. Phys. C 17:4207 (1984).
3. R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 50:1494 (1983).
4. G. Aeppli and R. Bruinsma, Phys. Lett. 97A:117 (1983).
5. J. M. Normand, M. L. Mehta, and H. Orland, J. Phys. A 18:621 (1985).
6. D. Derrida, J. Vannimenus, and Y. Pomeau, J. Phys. C 11:4749 (1978).
7. U. Behn and V. A. Zagrebnov, JINR, E 17-87-138, Dubna (1987).
8. P. Szépfalusy and U. Behn, Z. Physik B, 65:337 (1987).

[^0]: Contribution to the symposium "Statistical Mechanics of Phase Transitions-Mathematical and Physical Aspects," Třebon̆, CSSR, September 1-6, 1986.
 ${ }^{1}$ Sektion Physik der Karl-Marx-Universität Leipzig, Karl-Marx-Platz, Leipzig, 7010, German Democratic Republic.
 ${ }^{2}$ Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, USSR.

